Electric car kit approved ?. Yes, in Spain and Europe.

In recent years, electric cars have become more and more common, and the question,often is: which electric car to buy?.

With the new European directives, regulations to reduce CO2 emissions, the inflation of raw materials (copper, aluminum, lithium, etc.) and the problems in the supply chain, it becomes increasingly obvious that the way forward is to retrofit, that is to convert a car into electric.

The most obvious advantage is the price, and that is that converting a small city vehicle with a car conversion kit to electric can have the same or less price than buying an electric car without a license.

And without looking at the price, the fact of giving our planet earth less work and making real use of the circular economy is the most important reason.

By buying an electric car, we will have promoted the manufacture of a car from scratch, with the resulting waste of energy and resources, while converting it with a conversion kit, we will be recycling and reusing a car that would otherwise go to scrap.

Well, we are ready to offer our first “approved car kit in Spain” (and in Europe), in this case for the fabulous classic Mini. And more approved kits will follow the Mini: VW Beetle, Seat 600, Seat Ibiza, Renault Kangoo,…

The kit will be tested, approved and ready for distribution in 2023.

And what does this approved kit consist of?

The kit has a three-phase induction electric motor of 18Kw of sustained power and 35Kw of maximum power. Air-cooled and weighing about 50Kg, it will be capable of developing a maximum torque of 150Nm.

The brain of this kit will be a 108V controller with a sustained output current of about 250A, air-cooled, which makes it easier to maintain, and with a power capacity of up to 55Kw and an energy efficiency of 98%.

The batteries for the prototype will be a 10Kw lithium battery pack with its corresponding charger (the final battery pack is yet to be determined), more than enough for urban use for the Mini.

It also has a 12V dc-dc converter so that the auxiliary battery continues to power the car lights.

Also, the kit will have all the other extras such as signal wiring, high-voltage cable (so that the conversion is very simple without the need to add anything else) and a console with all the information on the Mini (led aesthetics or Mini aesthetics)

The entire drive assembly is installed on the Mini’s sub-frame, so mechanical installation is a simple step from replacing the old sub-frame with the new one from the kit. Something that the car workshops will appreciate because of how easy and fast this operation is.

How will the kit approval process be?

Well, as simple as there is nothing to do. The kit will be distributed with the approved conformity reports (including the batteries approved with the R100V2), which will suffice with the workshop certificate that assembles it to go to the Technical inspection service (MOT in the UK) and update the Mini’s technical sheet.

The Mini will be a similar vehicle, weighing exactly the same (about 650 kg), with its four seats and running on electricity, it will be possible to obtain the ZERO label without any difficulty. Of course, a silent, more fluid drive, with regenerative braking and ready to continue being driven for many more years.

Telemetry confirmed good news.

We went to the speed track, in Cartagena, where we could use the track for some time. We thank you very much for their help.



We decided to drive a non-stopping run at a constant current, to see how other aspects of the prototype (our electric Twingo), as range, temperatures, rpms..etc. . were affected.


Due to the amount of corners the track had, we couldn’t get a stable current consumption, but at least we could monitor it, and that was the result for 20 min drive.



We can see an average of 120 Amp out of the battery pack most of the time. And also, around 210 Amp out of the controller.


All this time we have consume around 3,3 Kw, which is a stoning 46% of the total capacity.



But, ¿how this test affected to the rest of the components?. Well, we could see the controller a bit too hot, so that led us to think about an additional cool system for the controller. We saw a peak of 72ºC, which is the limit of a healthy temperature, so we are working in some system to dissipate faster the temperature of the heat sink controller.



The motor also was a bit warm, but we could see a very healthy average between 40ºC and 50ºC, so no drama about it, for now.



We can also see that we tried to get the motor at the stable revolution rate of 2500 rpm, which is the manufacturer  recommended rpm rate to get the maximum torque. Seeing that we did drive a maximum rpm efficiency it is also good news. So, Telemetry came ok at Cartagena´s speed track.




So, a little video with a summary of the whole test can be enjoyed here. If you need a professional video recording work for your project, please contact:


How to convert your car to electric?

quien mato el coche electricoWhen I had the idea of converting my own car to electric, I had two goals in mind. To be able to drive a novel car, that wouldn´t make any noise and the cost for the fuel be little or nothing.  The other goal was to stop once for all contributing to dirt our environment and be able to tell the rest of the people “Yes, we can”, now days you also can have an electric vehicle exactly as it was at the beginning of the 20th century in New York (See the documentary “Who killed the electric car?” ).

Little by little, this idea was more and more real, asking other people, researching on the net and other countries where this was already a reality, I started the project of building an electric car.

Choosing a donor car.

The first step, once everything is clear, was to choose a cheap car and appropriate for the project The best cars are old vehicles o classic cars. The reason for this is because they are not complex in their design and electronics are not playing an important role in the car functions.  There is no need to be afraid at this point, nothing anyone can overcome reading a bit about the chosen car.

01_renault_twingo_elelectricAnother important requirement is the car to be light in weight, less than 1000 Kg is more than adequate, and 800Kg is ideal.  The reason behind this is the resistance the car has because of the friction in the roads, the more resistance, the more electric energy it will need to drive.

There is also other elements that a high speed affects the performance as the Aerodynamic coefficient, but this will leave it for the time being.

The old Renault Twingo is a car that weights very little, it doesn’t depends much on electronics (it doesn’t come with power steering or automatic gearbox). So I decided to get a cheap second hand Twingo and I spent 500€.



And now, the motor.

The motor is something you need to spend some time researching on it to take the correct decision. By choosing a small car, the motor doesn’t have to be very powerful, so a 7 to 15 Kw motor can be just perfect. There are two kinds of motors:  DC motors (direct current) and AC motors (alternating current). The first ones are cheaper, more accessible in second hand markets or scrap yards, but they are less efficient. The second ones are more expensive; they weigh less and are more efficient. Then according to other technical aspects are synchronous motor and asynchronous, also other with permanent magnets, which supposed to be top of the list. As examples, there are 7 Kw motors from China that cost less that 1000€, while in Europe or USA you can have 15 to 25Kw motor between 2000 and 4000€. I decided to go for an Slovenian 14 Kw motor, branded Letrika. I knew this provider at the electric car fair EVS27 in 2013.

Motor electrico

Motor electrico

Lets go to the motor controller.

This is one of the main components, it is also one of the most expensive and it goes paired with the motor for two reasons: One, it is the one in charge to convert the batteries electric power to the correct voltage necessary for the motor, and the second, to regulate the speed of the motor, so the controller needs to be designed for it. As with the motor, there are DC controllers and AC controllers. The good news is that most of the motor manufacturer they also do the controllers, and if the don’t, normally the motor can be configured for generic configurable controllers.

Controllers are also classified according to the maximum current they can feed, the more current and voltage, the more powerful l the motor will be. There are several brands as Brusa, Curtis, Sagem, ..


03_curtis_controllerI got a Curtis controller, medium range for AC motor, the Curtis controller 1236. Most of the controllers are programmable, so you can adapt it to your own motor. You will have to study a bit about variety and features of the controller best suits you.



And we get to the batteries, the queens.

Batteries are the most important element in a electric vehicle, as they will define how much power and how much range the electric car will have. I hope one day this element will be the less important, but for the time being, this technology is more complex than we may think. The appropriate batteries bank is conditioned by the maximum distance the car will drive in one single char and also the charger and the BMS (Battery Management  System).  Not all kind of batteries can be charged or discharged in the same way, if you don’t follow the manufacturer requirements and limits, batteries can be affected and their life span be reduced.

There are several technologies in the market right now, but in practical terms we can talk about 3 or 4 types. Lets start by the cheap ones.

04_lead_batteryLead Batteries. They are the cheapest ones, but the least suitable  ones because its design, as they are not design to provide a constant current all the time, but to provide a very strong one in one go, and this is not what a controller for a electric motor needs. The good news for a budget car, is that even dead, you can re-acconditionate them or de-sulphate them. This is a delicate process as the content inside the batteries is sulphuric acid, so if you are a bit un-sure of what you are doing, better not to try. I have done it being very careful, and following all the security precautions and using protecting gloves, glasses and mask (in an open environment), at the end you need to neutralize the acid with sodium bicarbonate before wasting it to the sink. You can also buy them to avoid all this hassle. They are very heavy, but can be charged with any standard charger.


05_72V_agm_batteriesAGM or gel batteries.  Those are deep cycle batteries, they are lead batteries with more efficient electrolyte gel. They are a bit more expensive but they are designed for electric cars. They are very heavy too, and there are manufacturer that assure up to 1000 cycles before losing charge capacity. The charger has to be specially design for gel batteries to follow a correct charge parameters for gel or AGM. They are not very expensive, I bought 6 of them, 12V at 100Ah for about 900€.


06_lithium_battery Lithium batteries. This already more expensive, but they weight about half and they have double capacity. Those are the standard option for electric cars. They use to come in 3.7 cells, so you have to get many of them to achieve the desire voltage. Another VERY IMPORTANT issue is that lithium batteries need to be managed (charged and discharged) by a BMS (Battery Management System). The reason is that these batteries cannot be charged or discharged outside the recommended limits by the manufacturer. As an example, 18650 lithium cells can only be charged at a maximum of 4.1V and discharged at a minimum of 2.5V.
–    Pyrophosphate batteries (LiFePO4). They are the most expensive of all but also they have the more energy capacity.


Enough batteries for now..


07_dc_dc_converter_72vAnother very important component is a current converter for high voltage to 12V.
When we remove the IC engine (Internal combustion), one of the components that also disappears is the alternator, the one in charge of keep the battery always at the proper voltage (in this case we could call it the auxiliary battery) for lights, electric windows, radio, etc. So, as the alternator is missing, we need a system have it always charged, for example, a DC converter  72V to 12V.




Well, that´s it, isn’t ?. No, still something important, the brakes.

For the brakes, you need to supply the vacuum that the IC engine use to make for the brake booster. So we need to install a vacuum pump in order to replace the missing one in the IC engine.


Then you need other small components, but equally important as a pedal accelerator, a contactor, some relays, fuses, etc.


Those small components are as relevant as the big ones, because even with the motor and controller, with no cables, there is no use. Also, you need to see the high voltage requirements that the motor manufacturer recommends. Also the signal cables are also important in following no just the diameter but the isolation.

Now the adventure starts… just install everything in the car.



If you are interested in converting your car to electric and need more information, support, documentation or just someone who share your hobby, you can contact with us by clicking here.